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Part 1 
basic models and implementations 



Outline

• Basic model (introduction)

• Market impact / Price dynamics

• Optimal trading Strategy

• model with information, model with temporary impact

• Implementation



Basic model

• to acquire a large block of ҧ𝑆 shares over a fixed time interval [0,T]

• denote 𝑆𝑡 be the shares acquired in period t at Price 𝑃𝑡

• impose a no-sales constraints (𝑆𝑡 ≥ 0)

𝑀𝑖𝑛 𝐸[σ𝑡=1
𝑇 𝑃𝑡𝑆𝑡] , where σ𝑡=1

𝑇 𝑆𝑡 = ҧ𝑆

• 𝑃𝑡 includes 2 distinct components : price dynamics (absence of our trade) and 
impact of our trade, where the impact is a linear function of trade size(θ)

• there exists white noise, which is assumed to be a zero mean and IID random 
shock 



Cont.

• dynamic programming algorithm : finding the optimal control {𝑆𝑡
∗}

• the optimal solution {𝑆1
∗, 𝑆2

∗, … , 𝑆𝑇
∗ } must also be optimal for 

remaining program at every intermediate date t.

• Bellman equation:

𝑉𝑡 𝑃𝑡−1, 𝑊𝑡 = 𝑀𝑖𝑛 𝐸𝑡[𝑃𝑡𝑆𝑡 + 𝑉𝑡+1(𝑃𝑡 , 𝑊𝑡+1)]

• Wt: the number of shares remain to be purchased

𝑊𝑡 = 𝑊𝑡−1 − 𝑆𝑡−1, 𝑊1 = ҧ𝑆, 𝑊T+1 = 0



Best execution strategy(linear)

1. 𝑉𝑡 𝑃𝑡−1, 𝑊𝑡 = 𝑀𝑖𝑛 𝐸𝑡[𝑃𝑡𝑆𝑡 + 𝑉𝑡+1(𝑃𝑡 , 𝑊𝑡+1)]

2. t = T 

𝑉𝑇 𝑃𝑇−1, 𝑊𝑇 = 𝑀𝑖𝑛 𝐸𝑇[𝑃𝑇𝑊𝑇] = (𝑃𝑇−1 + θ𝑊𝑇) 𝑊𝑇

3. t = T-1

𝑉𝑇−1 𝑃𝑇−2, 𝑊𝑇−1 = 𝑀𝑖𝑛 𝐸𝑇−1[𝑃𝑇−1𝑆𝑇−1 + 𝑉𝑇(𝑃𝑇−1, 𝑊T)]

4. substitute 𝑉𝑇 𝑃𝑇−1, 𝑊T and differentiate V𝑇−1 with respect to 𝑆𝑇−1

ST−1
∗ = 𝑊𝑇−1/2

𝑉𝑇−1 𝑃𝑇−2, 𝑊𝑇−1 = 𝑊𝑇−1 𝑃𝑇−2 +
3

4
θ𝑊𝑇−1

= 𝑠𝑇



Best execution strategy(linear)

• continue in this fashion:
ST−𝑘

∗ = 𝑊𝑇−𝑘/(k+1)

𝑉𝑇−𝑘 𝑃𝑇−𝑘−1, 𝑊𝑇−𝑘 = 𝑊𝑇−𝑘 𝑃𝑇−𝑘−1 +
𝑘+2

2(𝑘+1)
θ𝑊𝑇−𝑘

• until we reach the beginning of the program:

S1
∗ = 𝑊1/T ,  𝑉1 𝑃0, 𝑊1 = 𝑊1 𝑃0 +

𝑇+1

2𝑇
θ𝑊1

• 𝑊1 = ҧ𝑆

S1
∗ = ҧ𝑆/T ,  𝑉1 𝑃0, 𝑊1 = 𝑃0

ҧ𝑆 +
θ ҧ𝑆2

2
(1 +

1

𝑇
)

• forward substitution
S1

∗ = S2
∗ = ⋯ = S𝑇

∗ = ҧ𝑆/T 



Best execution strategy(linear)

• Observe 𝑉1 𝑃0, 𝑊1 = 𝑃0
ҧ𝑆 +

θ ҧ𝑆2

2
(1 +

1

𝑇
) :

no-impact costs 𝑃0
ҧ𝑆 & cumulative price impact 

θ ҧ𝑆2

2
(1 +

1

𝑇
)

• impact term is a decreasing function of T : seems that impact become 
negligible if there is no time limit

• However, law of motion for 𝑃𝑡 implies that the price impact θ𝑆𝑡 of an 
individual trade has a permanent effect on 𝑃𝑡



Linear price impact with information

• 𝑋𝑡 ∶ a serially−correlated state variable which also affects the execution

• rewrite:

𝑃𝑡 = 𝑃𝑡−1 + θ𝑆𝑡 + γ𝑋𝑡 + ε𝑡,  θ>0

𝑋𝑡 = ρ𝑋𝑡−1 + η𝑡 , ρϵ(-1,1)

where ε𝑡, η𝑡 are independent white noise processes with mean 0

• 𝑋𝑡 might be public information, e.g., S&P 500 index, which γ measures the 
sensitivity to markets movements(CAPM)

• 𝑋𝑡 might be private information, which γ represents the importance of that 
information for 𝑃𝑡



Linear price impact with information

• best-execution strategy with information X𝑡

negativepositive

negative

affected by 𝑊𝑡 and X𝑡

positive



implementation

• Japan Tobacco Inc., 2914.T

• 2022/06/24 – 2022/06/30(5 days)

• Only discuss ‘buying’

• Step:
1. Decide parameters

2. performance of strategy with and without information

11

𝑃𝑡 = 𝑃𝑡−1 + θ𝑆𝑡 + γ𝑋𝑡 + ε𝑡,  θ>0
𝑋𝑡 = ρ𝑋𝑡−1 + η𝑡 , ρϵ(-1,1)



𝑋𝑡 𝑎𝑛𝑑 ρ

• 𝑋𝑡 ∶ a serially−correlated state variable which also affects the execution

𝑋𝑡 = ρ𝑋𝑡−1 + η𝑡 , ρϵ(-1,1)

• set 𝑋𝑡 daily return of ^N225 (2022/03/23-2022/06/23)

𝑋𝑡=(^N225[‘Close’]-^N225[‘Open’])/(^N225[‘Open’])

• ρ =

1

𝑇1−1
σ𝑡=2

𝑇1 ෦𝑥𝑡 ෧𝑥𝑡−1

1

𝑇1−1
σ

𝑡=1
𝑇1−1

෦𝑥𝑡
2 , ෦𝑥𝑡 = (𝑥𝑡 −μ)/σ , 𝑇1 = 63 (3 𝑚𝑜𝑛𝑡ℎ𝑠)

• get ρ = -0.13356

Ref of AR(1) : http://www.liuyanecon.com/wp content/uploads/TS19Lec7.pdf?fbclid=IwAR0pL6jkBDYggIlyXj3f5zQIBW7JD9oaIc62gglpYpA28mMLhCP-ZjDj5G4



𝑆𝑡 (size of meta order)

• identify order side : Bid(Tick Dir. = ‘^’)  / Ask(Tick Dir. = ‘v’)
• set bid size =1 / ask side = -1 (focus buying in this paper)
• daily 𝑆𝑡 = σ volume of each trade ∗ side
(2022/03/23-2022/06/23)



θ, γ

• 𝑃𝑡 = 𝑃𝑡−1 + θ𝑆𝑡 + γ𝑋𝑡 + ε𝑡,  θ>0

• E[𝑃𝑡−𝑃𝑡−1] = θ𝑆𝑡 + γ𝑋𝑡, 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑡 : daily VWAP price

• get θ = 4.3475 *10−6, γ = 6.9912

(by scipy package, curve_fit function )

γ, ρ : not significant



Parameter (Summary)

• θ = 4.3475 *10−6

• γ = 6.9912 

• ρ = -0.13356

• ση
2  = 1- ρ2 = 0.9822

• T = 5

• ҧ𝑆 = 100000

𝑃𝑡 − 𝑃𝑡−1 = θ𝑆𝑡 + γ𝑋𝑡 + ε𝑡,  θ>0

daily VWAP price

daily trade volume*side

daily return rate of ^N225



Without information With information (optimal strategy) Improvement

Expected cost 241456734.6728 241263271.8124 193462.8604

Actual cost 241463185.1412 239338913.8219 2124271.3193

𝑆𝑇−𝑘
∗ =

1

𝑘 + 1
𝑊𝑇−𝑘 +

ρ𝑏𝑘−1

2𝑎𝑘−1
𝑋𝑇−𝑘

② δX𝑡: affected by information. If ρ > 0 and X > 0, 
then we increase the num of trade size

① δW𝑡: affected by remaining 
shares. If ρ=0, then it is same as 
naïve strategy

① ②

𝑃𝑡 = 𝑃𝑡−1 + θ𝑆𝑡 + γ𝑋𝑡 + ε𝑡,  θ>0
𝑋𝑡 = ρ𝑋𝑡−1 + η𝑡 , ρϵ(-1,1)

Result

expected of naïve cost :

Note:
The non-negativity restriction was not imposed and was not binding in this realization.



• the best-execution strategy with information varies over time as a 
linear function of remaining shares 𝑊𝑡and information variable 𝑋𝑡

𝑆𝑇−𝑘
∗ =

1

𝑘 + 1
𝑊𝑇−𝑘 +

ρ𝑏𝑘−1

2𝑎𝑘−1
𝑋𝑇−𝑘

• first term : naïve strategy, second term : adjustment from 
information

• ρ = 0, implies 𝑋𝑇−𝑘(positive) is unforecastable, no longer affect the strategy

• ρ > 0 (without loss of generality : γ>0), increase the number of shares purchased 
ρ < 0, decrease the number of shares purchased

Linear price impact with information



current execution strategy

• linear market impact without information

• linear market impact with information



model limitations

• there are several important limitations:
• positive probability of negative prices
• price impact and information have only permanent effects 

on prices, which contradicts several recent empirical 
studies (combination of permanent and temporary effects)



Linear-percentage temporary price impact

• let execution price be comprised of two components: no impact price ෩𝑃𝑡
and price impact ∆𝑡

𝑃𝑡 = ෩𝑃𝑡 + ∆𝑡

• no impact price ෩𝑃𝑡 ∶ plausible and observable proxy for such a price is the 
midpoint of the bid/ask price

• price dynamics follow geometric Brownian motion (to ensure non-negative 
price) 

෩𝑃𝑡 = ෫𝑃𝑡−1 ∗ exp 𝑍𝑡 ,
𝑤ℎ𝑒𝑟𝑒 𝑍𝑡 𝑖𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

• price impact:
∆𝑡= (θ𝑆𝑡 + γ𝑋𝑡) ෩𝑃𝑡

𝑋𝑡 = ρ𝑋𝑡−1 + η𝑡



optimization problem

(1) 𝑃𝑡 is guarantee to be non-negative under mild restrictions on ∆𝑡

(2) the price impact is temporary, moving current price but having no effect on future price
(3) percentage price impact increase linearly with trade size, which is more plausible
(4) implies a natural decomposition of execution costs, decoupling market-microstructure  
effects from price dynamics



Best execution strategy

where:



implementation

• Japan Tobacco Inc., 2914.T

• 2022/06/24 – 2022/06/30(5 days)

• Only discuss ‘buying’

• Step:
1. Decide parameters

2. performance of strategy with and without information

23

𝑃𝑡 = ෩𝑃𝑡 + ∆𝑡 ,
෩𝑃𝑡 = ෫𝑃𝑡−1 ∗ exp 𝑍𝑡

∆𝑡= (θ𝑆𝑡 + γ𝑋𝑡) ෩𝑃𝑡

𝑋𝑡 = ρ𝑋𝑡−1 + η𝑡



Rewrite function

• 𝑃𝑡 = ෩𝑃𝑡 + ∆𝑡

𝑃𝑡 = ෩𝑃𝑡 + (θ𝑆𝑡 + γ𝑋𝑡) ෩𝑃𝑡

𝑃𝑡−෪𝑃𝑡

෪𝑃𝑡
 = θ𝑆𝑡 + γ𝑋𝑡

• 𝑆𝑡 : = σ volume of each trade ∗ side (2022/03/23-2022/06/23)

• 𝑋𝑡 : daily return of ^N225 (2022/03/23-2022/06/23)

As mentioned : ρ = -0.13356 (p.10)



𝑃𝑡, ෩𝑃𝑡

• 𝑃𝑡 : daily VWAP price

• ෩𝑃𝑡 : midpoint of the bid/ask price (daily, from 3 months data)

෩𝑃𝑡 =
෫𝑃𝑡,𝑏𝑖𝑑 + ෫𝑃𝑡,𝑎𝑠𝑘

2

• 𝑍𝑡 = log
෪𝑃𝑡

෫𝑃𝑡−1
~ N(μ𝑧, σ𝑧)

• get μ𝑧 = 2.3649 *10−3 , σ2
𝑧= 5.5645 *10−5

𝑃𝑡 = ෩𝑃𝑡 + ∆𝑡
෩𝑃𝑡 = ෫𝑃𝑡−1 ∗ exp 𝑍𝑡



θ, γ

•
𝑃𝑡−෪𝑃𝑡

෪𝑃𝑡
 = θ𝑆𝑡 + γ𝑋𝑡

• get θ = 1.3235 *10−10, γ = 2.7351 *10−2

• (by scipy package, curve_fit function)



Parameter

• θ = 1.3235 *10−10

• γ = 2.7351 *10−2

• ρ = -0.13356

• ση
2  = 1- ρ2 = 0.9822

• T = 5

• ҧ𝑆 = 100000

• μ𝑧 = 2.3649 *10−3, σ2
𝑧=  5.5645 *10−5 𝑃𝑡 = ෩𝑃𝑡 + ∆𝑡 ,

෩𝑃𝑡 = ෫𝑃𝑡−1 ∗ exp 𝑍𝑡

∆𝑡= (θ𝑆𝑡 + γ𝑋𝑡) ෩𝑃𝑡

𝑋𝑡 = ρ𝑋𝑡−1 + η𝑡



Result

Naïve stategy With information (optimal strategy) Improvement

Expected cost 289824842.9145 -7779071091.0459 7489246248.1314

Actual cost 242305528.7341 -310115353.7820 67809825.0479

expected of naïve cost : 𝐸 𝑃𝑡

ҧ𝑆

𝑇
= ഥ𝑃𝑡 ∗

ҧ𝑆

𝑇



Data of Paper

• θ = 5∗ 10−7

• γ = 0, 0.001, 0.0025, 0.005, 0.01

• ρ = -0.5, -0.25, 0.00, 0.25, 0.5

• ση
2  = 1- ρ2

• T = 20 

• ҧ𝑆 = 100000

• μ𝑧 = 0 , σ𝑧 = 0.02/ 13



expected cost –no impact cost
= 𝑉1 – 𝑃0

ҧ𝑆 (𝑐𝑒𝑛𝑡𝑠/𝑠ℎ𝑎𝑟𝑒)

result of Paper : 

result : 



ρ = 0, γ =0.01



Problem

• the calibration parameters are not significant, can’t effectively 
represent the overall price dynamics.

• the model fails to  cover long-term periods, leading to oscillations in 
results

Alfonsi, Schied & Slynko (2009) 



Part 2
advanced models and implementations



Outline

• review

• the general formulation

• best execution for portfolios

• impose constraints

• Implementation



Review

• Basic Model :

𝑀𝑖𝑛 𝐸[σ𝑡=1
𝑇 𝑃𝑡𝑆𝑡] , where σ𝑡=1

𝑇 𝑆𝑡 = ҧ𝑆

• Price Dynamics : 

𝑃𝑡 = 𝑃𝑡−1 + θ𝑆𝑡 + ε𝑡

• Dynamic Programming : 

𝑉𝑡 𝑃𝑡−1, 𝑊𝑡 =𝑀𝑖𝑛 𝐸𝑡[𝑃𝑡𝑆𝑡 + 𝑉𝑡+1(𝑃𝑡 , 𝑊𝑡+1)]

• Optimal strategy : 

S1
∗ = S2

∗ = ⋯ = S𝑇
∗ = ҧ𝑆/T 



execution strategy

• linear market impact without information

𝑃𝑡 = 𝑃𝑡−1 + θ𝑆𝑡 + ε𝑡

S1
∗ = S2

∗ = ⋯ = S𝑇
∗ = ҧ𝑆/T 

• linear market impact with information

𝑃𝑡 = 𝑃𝑡−1 + θ𝑆𝑡 + γ𝑋𝑡 + ε𝑡

𝑆𝑇−𝑘
∗ =

1

𝑘+1
𝑊𝑇−𝑘 +

ρ𝑏𝑘−1

2𝑎𝑘−1
𝑋𝑇−𝑘

• linear-percentage temporary price impact

𝑃𝑡 = ෩𝑃𝑡 + ∆𝑡



The general formulation

• the general approach to minimizing expected execution costs

• objective function

𝑀𝑖𝑛 𝐸[σ𝑡=1
𝑇 𝑃𝑡𝑆𝑡] , where σ𝑡=1

𝑇 𝑆𝑡 = ҧ𝑆

• with a more general law of motion

• 𝑓𝑡 is a general nonlinear and possibly time-varying function

• 𝑋𝑡 is a vector of arbitrary dimension which can accommodate multiple 
factors



Best execution strategy

• k=0

• k=1



Best execution strategy

• continuing in this fashion

• reach k=T-1(starting point)



• initial conditions enable us to obtain entire sequence of optimal 
trades:

• for certain specifications of the law of motion, computing the optimal 
control explicitly may be intractable because a closed-form expression 
for the optimal-value function is not available (propose alternatives in 
the following slides)



Discretization approach(with grid search)

• discretize possible price as a multiple of some constant d(like 1/8), let K be 
the number of possible values in T periods

• discretize trade size 𝑆𝑡 in fixed increments of s shares(like 100 shares), let J
= ҧ𝑆/s denote the number of round lots that need to be executed initially

• let 𝑋𝑡 take on a finite number N of possible values

• Under these assumptions, at each time t the optimal-value function 
Vt(𝑃𝑡−1 , 𝑋𝑡 , 𝑊𝑡 ) must be evaluated numerically for KJN possible values. 
As a result the total memory requirements are of the order O(KJN)



Example
given:

• ҧ𝑆 = 100000

• 𝑃0 = 50, range : 45~55

• T = 20 periods

get:

• K = 80 (price range / price interval ‘d’)

• J = 1000( ҧ𝑆 /execution interval ‘s’)

• N = 10

• KJN = 800000 values of state and control variable in each periods 

• total computation : 16 millions

• if 𝑉𝑡 takes 10−6s to compute, total computation will be 16 s

not feasible for stocks with high volatility, longer horizons, or a large number of 
information variables 



Approximate dynamic programming

• the optimal-value function is approximated at each stage by a 
quadratic function

• always yield an analytical but approximate solution



best execution strategy

• let 𝑌𝑡 = (𝑃𝑡−1, X𝑡 , 𝑊𝑡) denote the state vector at time t

• at k=0 :

compute 𝑉𝑇(𝑌𝑇), and we approximate this function with 𝑉𝑇 𝑌𝑇  where

and matrix 𝑄𝑇, vector 𝑏𝑇 are selected to minimize :



• general (T-k) :

find 𝑉𝑇−𝑘

approximate this function

and matrix 𝑄𝑇−𝑘, vector 𝑏𝑇−𝑘 are selected to minimize :



reason using approximate dynamic 
programming

• the optimal value functions we have considered are quadratic

• a quadratic approximation can capture a variety of nonlinearities 
parsimoniously. (more useful than discretization approach)

• the minimization that must be performed at each stage of the 
dynamic program is considerably more tractable when the optimal-
value function is quadratic



Best execution for portfolios

• extend our approach to the multivariate setting in which a portfolio of 
n stocks must be executed within T periods.

• the important feature : capture cross-stock relations such as cross-
autocorrelations.

• price impact may be larger than the sum of the price impact of 
trading separately.

• if some stocks are negatively correlated, or if the portfolio to be 
executed includes both purchases and sales, then the execution cost 
may be lower due to a kind of diversification effect 



Basic model – linear price impact case
• ҧ𝑆 ≡ ҧ𝑆1 … ҧ𝑆𝑛

′ : the vector of n stocks to be purchased or sold within T periods 

• P𝑡 ∶ the vector of prices

• 𝑆𝑡 ∶ the vector of shares executed

• 𝑊𝑡 ∶ the vector of remaining shares to be executed

• 𝑋𝑡 ∶ the vector of m information variables

𝑀𝑖𝑛 𝐸 

𝑡=1

𝑡=𝑇

𝑃𝑡′ 𝑆𝑡

subject to



𝑡=1

𝑡=𝑇

𝑆𝑡 = ҧ𝑆

𝑊𝑡 = 𝑊𝑡−1 − 𝑆𝑡−1



Basic model (portfolio)

where
A is a positive definite (nxn) matrix
B is an arbitrary (nxm) matrix
ε𝑡 ∶ n vector white noise with mean 0 and covariance matrix σ ε
η𝑡 : m vector white noise with mean 0 and covariance matrix σ η



Best execution strategy



Discussion

• it is linear in the two state variables 𝑊𝑇−𝑘 𝑎𝑛𝑑 𝑋𝑇−𝑘

• unless the matrix A is diagonal, the best-execution strategy for one 
stock will depend on the parameters and state variables of all the 
other stocks.

• if selling in the portfolio, the objective function should be revised : 

𝑀𝑖𝑛 𝐸 

𝑡=1

𝑡=𝑇

(𝑈𝑡 − 𝑃𝑡)′ 𝑆𝑡



multivariate LPT case 

optimal strategy can be calculate recursively :

*We omit these formulae for the sake of brevity - they offer no particular insights or intuition and would lengthen this 
paper by several pages



Imposing constraints

• In most practical applications, there will be constraints on the kind of 
execution strategies that institutional investors can follow

• For example, selling stock during purchasing shares 

• in practice, buy-programs(sell-programs) will almost be accompanied 
by non-negativity(non-positivity) constraints



• Monte Carlo simulations :  50000 buy programs samples(LPT case)

• observe the average probability that any trade will be a sale



imposing constraints is difficult

• assume imposing non negative restrictions

• 𝑉𝑇−𝑘 becomes a piecewise-quadratic function, with 3𝑘 pieces

• when T=20, there are 320 intervals at the last stage

• only feasible for very small numbers of periods T 



Closed-form solution with non-negativity constraints

• we present a specification of the law of motion under constraints

• 𝑃𝑡 = 𝑃𝑡−1 + θ𝑋𝑡𝑆𝑡 + ε𝑡,  θ>0

• log 𝑋𝑡 = log𝑋𝑡−1 + η𝑡



best execution strategy



discussion

• if κ lies in interval (0,1/2], then 𝑎0 = 1, 𝑎1 = 𝑎2 = ⋯ = 0, With such 
a negative expected growth rate for the price elasticity, it pays to wait 
until the very end before trading

• if κ lies in interval (1/2,3/4], 𝑎0= 1, 𝑎1 = 1 −
1

2κ
, 𝑎2 = 𝑎3= ⋯ = 0, 

trade nothing in the first T-2 periods

• if κ =1, which the best-execution strategy reduces to that of the linear 
price impact model with no information : 𝑆1

∗= 𝑆2
∗=…= 𝑆𝑇

∗ = ҧ𝑆/𝑇, which 
is naïve strategy

• As κ increases, increasing the opportunity cost of delayed trades, the 
best execution strategy begins its trading sooner and sooner.



implementation

• Japan Tobacco Inc., 2914.T

• 2022/06/24 – 2022/06/30(5 days)

• Only discuss ‘buying’

• Step:
1. Decide parameters

2. performance of strategy
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𝑃𝑡 = 𝑃𝑡−1 + θ𝑋𝑡𝑆𝑡 + ε𝑡,  θ>0
log 𝑋𝑡 = log𝑋𝑡−1 + η𝑡



𝑋𝑡

• 𝑋𝑡 : AR(1) in the logarithm of 𝑋𝑡

log 𝑋𝑡 = log𝑋𝑡−1 + η𝑡

• set 𝑋𝑡 daily return of ^N225 (2022/03/23-2022/06/23)

𝑿𝒕=(^N225[‘Close’][t]-^N225[‘Close’][t-1])/(^N225[‘Close’][t-1])

• 𝑿𝒕 should bigger than 0 : discard negative 𝑿𝒕

η𝑡 = log 𝑋𝑡 - log𝑋𝑡−1 ,   

• μη =  0.3529, ση = 1.6887, κ = 0.4609



θ

• 𝑃𝑡−𝑃𝑡−1 = θ𝑆𝑡𝑋𝑡 + ε𝑡, 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑡 : daily VWAP price, 𝑆𝑡 : daily trade volume

• get θ = 6.6021*10−5, με =  5.1733, σε = 2.218



Parameter

• T = 5, ҧ𝑆 = 100000

• θ = 6.6021*10−5, 

• μη =  0.3529 

• 𝜎𝜂 = 1.6887

• με =  5.1733

• 𝜎𝜀 = 2.218

• κ = 0.4609

𝑃𝑡 = 𝑃𝑡−1 + θ𝑋𝑡𝑆𝑡 + ε𝑡,  θ>0
log 𝑋𝑡 = log𝑋𝑡−1 + η𝑡



Result

Naïve strategy Optimal strategy Improvement(per share)

Expected cost 241800230.1974 241800017.3062 0.0021

Actual cost 244377363.6289 245751925.0784 -13.7456

κ lies in interval (0,1/2], 
, it pays to wait until the very end before trading 

𝐸[ 𝑃𝑡

ҧ𝑆

𝑇
] = 𝑃0

ҧ𝑆 + θ𝑋1

ҧ𝑆

𝑇

2
T(T+1)

2



Revise the model

• negative 𝑋𝑡 : set 𝑋𝑡 be the price of ^N225

𝑋𝑡=^N225[‘Close’]

• μη =  -0.0011, ση = 0.0120, κ = 0.9989

• θ = 1.4893*10−10, με =  4.7612, σε = 2.037

𝑃𝑡 = 𝑃𝑡−1 + θ𝑋𝑡𝑆𝑡 + ε𝑡,  θ>0
log 𝑋𝑡 = log𝑋𝑡−1 + η𝑡



Parameter

• T = 5, ҧ𝑆 = 100000

• θ = 1.4893*10−10

• μη =  -0.0011

• 𝜎𝜂 = 0.0120

• με = 4.7612 

• 𝜎𝜀 = 2.037

• κ = 0.9989

𝑃𝑡 = 𝑃𝑡−1 + θ𝑋𝑡𝑆𝑡 + ε𝑡,  θ>0
log 𝑋𝑡 = log𝑋𝑡−1 + η𝑡



Result

Naïve strategy Optimal strategy Improvement(per share)

Expected cost 241823659.7418 241823624.9916 0.0003

Actual cost 243552004.7933 243556038.9375 -0.0403

κ is close to 1
, the trading strategy is like naïve strategy

𝐸[ 𝑃𝑡

ҧ𝑆

𝑇
] = 𝑃0

ҧ𝑆 + θ𝑋1

ҧ𝑆

𝑇

2
T(T+1)

2



Discussion

• solve the oversold / overbought problem

• definition of 𝑋𝑡

• correlation between the price dynamics of ^N225 and 2914.T is  close to 0 

(^N225 is not a good information var for 2914.T) 

• k still follows the setting of paper

• model isn’t flexible，price impact = θ𝑋𝑡𝑆𝑡

k=0.4 k=0.6 k=1 k=2

T=1 0 0 20000 70731

T=2 0 0 20000 20732

T=3 0 0 20000 6098

T=4 0 16667 20000 1829

T=5 100000 83333 20000 610



Limitations – order types 

• there is a trade-off between limit and market orders, which generates 
another dynamic optimization problem

• requires an explicit measure of investors’ need for immediacy 
(urgency)

• we can include order type as a control variable and urgency in the 
objective function, but the problem is computationally intractable.

• two – stage optimization : first optimize the number of shares to be 
traded within each 30 minute interval, and then perform a second 
optimization within this 30 minute interval to decide the proportion 
of market and limit orders to use



Limitations -- risk

four sources of uncertainty:

• the expected cost  is itself a function of random initial conditions, and 
will vary from program to program

• estimation errors of the parameter will be propagated recursively 
through Bellman’s equation

• the law of motion for P and X may suffer from the kind of non-
stationarities and time-variation that plague all economic models



Limitation – other objective functions

• while we have focused exclusively on execution costs in this paper, 
investors are ultimately interested in maximizing the expected utility 
of their wealth.

• Therefore, the most natural approach to execution costs is to 
maximize the investor’s expected utility of wealth subject to the law 
of motion

• although such examples do provide important insights into the 
economics of transactions costs, they have little to say about 
minimizing transactions costs in practice.



Limitation – Partial versus general equilibrium

• we assume the parameters and functional form of the law of motion 
are unaffected by the investor’s trades

• However, if a small number of large investors dominate the market, 
then strategic considerations become more significant, P and X will be 
directly influenced by these trades



Conclusion –𝑀𝑖𝑛 𝐸[σ𝑡=1
𝑇 𝑃𝑡𝑆𝑡]

• linear market impact without information

• linear market impact with information

• linear percentage temporary(LPT)

                   ,                         , 

• General Formulation (alternative approach : Discretization approach/ 
approximate dynamic programming)



• models for portfolios

• imposing constraints

• limitations, extensions, and open questions

Conclusion –𝑀𝑖𝑛 𝐸[σ𝑡=1
𝑇 𝑃𝑡𝑆𝑡]



Conclusion

• using stochastic dynamic programming, we derived some different 
strategies that minimize the expected cost of execution

• the best execution strategy is 25% to 40% less than that of the naïve 
strategy 
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